反常霍尔效应(反常霍尔效应和量子反常霍尔效应)

时间:2026-02-05 20:56:21 来源:坐风百科网

今天给各位分享反常霍尔效应的反常反常反常知识,其中也会对反常霍尔效应和量子反常霍尔效应进行解释,霍尔霍尔和量霍如果能碰巧解决你现在面临的效应效应效问题,别忘了关注本站,反常反常反常现在开始吧!霍尔霍尔和量霍

量子自旋霍尔效应和反常霍尔效应的反常反常反常区别,求解!霍尔霍尔和量霍!效应效应效!反常反常反常

1:“量子自旋霍尔效应”是霍尔霍尔和量霍指找到了电子自转方向与电流方向之间的规律,利用这个规律可以使电子以新的效应效应效姿势非常有序地“舞蹈”,从而使能量耗散很低。

在特定的量子阱中,在无外磁场的条件下(即保持时间反演对称性的条件下),特定材料制成的绝缘体的表面会产生特殊的边缘态,使得该绝缘体的边缘可以导电,并且这种边缘态电流的方向与电子的自旋方向完全相关,即量子自旋霍尔效应

2:量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于2013年3月14日在线发表这一研究成果。

(1、量子反常霍尔效应使得在零磁场的条件下应用量子霍尔效应成为可能;

2、这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。)

反常霍尔效应的霍尔效应

量子反常霍尔效应的最美妙之处就在于不需要任何外加磁场,人类有可能利用其无耗散的边缘态发展新一代的低能耗晶体管和电子学器件,从而解决电脑发热问题和摩尔定律的瓶颈问题,因此,这项研究成果将会推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命的进程。

但反常霍尔效应的量子化对材料性质的要求非常苛刻,如同要求一个人同时具有短跑运动员速度、篮球运动员高度和体操运动员灵巧:材料能带结构必须具有拓扑特性从而具有导电的一维边缘态;材料必须具有长程铁磁序从而存在反常霍尔效应;材料体内必须为绝缘态从而只有一维边缘态参与导电。在实际材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲更是巨大挑战,正因为此,美国、德国、日本等科学家未取得最后成功。 被视作“有可能是量子霍尔效应家族最后一个重要成员”的量子反常霍尔效应,被中国科学家首次在实验上独立观测到。2013年3月16日凌晨,由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学的研究人员联合组成的团队,历时4年完成的研究报告在《科学》杂志在线发表。这项被3名匿名评审人给予高度评价的成果,是在美国物理学家霍尔于1880年发现反常霍尔效应133年后,首次实现的反常霍尔效应的量子化,也因此被视作“世界基础研究领域的一项重要科学发现”。

作为微观电子世界的量子行为在宏观尺度上的完美体现,量子霍尔效应一直在凝聚态物理研究中占据着极其重要的地位。自美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应之后,不少科学家凭借在此领域的重要发现斩获大奖。1980年,德国科学家冯・克利青发现整数量子霍尔效应,于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦、德国物理学家施特默等发现了分数量子霍尔效应,这个效应不久由另一位美国物理学家劳弗林给出理论解释,三人共同分享了1998年诺贝尔物理奖。

而此次中国科学家发现的量子反常霍尔效应因为不需要外加磁场,成为多年来该领域一个非常困难的重大挑战。首先,它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应;其次,它的实现也更加困难,需要精准的材料设计、制备与调控。因此,这项全新突破也被视作“有可能是量子霍尔效应家族的最后一个重要成员”。

自2009年起,清华大学薛其坤院士带领团队向量子反常霍尔效应的实验实现发起冲击。截止到2013年的四年来,团队生长和测量了1000多个样品,利用分子束外延的方法生长了高质量的磁性掺杂拓扑绝缘体薄膜,将其制备成输运器件并在极低温环境下对其磁电阻和反常霍尔效应进行了精密测量。终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2~25800欧姆世界难题得以攻克。

“这是我们团队精诚合作、联合攻关的共同成果,是中国科学家的集体荣誉。”薛其坤院士强调说。

量子反常霍尔效应和量子霍尔效应有什么不同

量子反常霍尔效应和量子霍尔效应的区别:

1、定义不同

量子反常霍尔效应:量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。

量子霍尔效应:量子霍尔效应(quantum Hall effect)是量子力学版本的霍尔效应,需要在低温强磁场的极端条件下才可以被观察到,此时霍尔电阻与磁场不再呈现线性关系,而出现量子化平台。

2、意义不同

量子反常霍尔效应:量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。

量子霍尔效应:

整数量子霍尔效应:量子化电导e²/h被观测到,为弹道输运(ballistic transport)这一重要概念提供了实验支持。

分数量子霍尔效应:劳夫林与J·K·珍解释了它的起源。两人的工作揭示了涡旋(vortex)和准粒子(quasi-particle)在凝聚态物理学中的重要性。

3、发现不同

量子反常霍尔效应:2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。

量子霍尔效应:霍尔效应在1879年被E.H.霍尔发现,它定义了磁场和感应电压之间的关系。

参考资料来源:百度百科——量子反常霍尔效应

参考资料来源:百度百科——量子霍尔效应

怎么判断霍尔效应正负电荷移动方向?

将一导电板放在垂至于他的磁场中,当有电流通过时,在导电板的a、a'两侧会产生一个电势差uaa',这就是霍尔效应。

利用左手定则,可以判断载流子(q0,正电荷)所受洛伦兹力f的方向是与纸面平行向上,即运动向上;载流子(q0,负电荷)所受洛伦兹力f的方向是与纸面平行向下,即运动向下。

扩展资料:

霍尔效应在应用技术中特别重要。霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电流(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH)。

量子霍尔效应的产生需要用到非常强的磁场,因此至今没有广泛应用于个人电脑和便携式计算机上——因为要产生所需的磁场不但价格昂贵,而且体积大概要有衣柜那么大。而反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转,反常霍尔电导是由于材料本身的自发磁化而产生的。

量子反常霍尔效应 什么是量子反常霍尔效应

1、在凝聚态物理领域,量子霍尔效应研究是一个非常重要的研究方向。量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。

2、自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于2013年3月14日在线发表这一研究成果。

什么是反常霍尔效应

简单说来,在非铁磁材料中的霍尔效应中,电阻是和外加磁场有关的。而反常霍尔效应一般出现在铁磁性材料中,即电阻还和磁化强度有关系。

反常霍尔效应的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于反常霍尔效应和量子反常霍尔效应、反常霍尔效应的信息别忘了在本站进行查找喔。